OCR using Tess4J on Ubuntu
Simon Scholz2023-11-285 min readComments /Feedback / Requests?

Tess4J is a Java wrapper for Tesseract OCR. It provides Java and Kotlin APIs for doing OCR on images.

Setup

Installing tesseract

Tesseract is an open source OCR engine. It is available for Linux, Windows and macOS. This is the actual OCR engine, which Tess4J uses under the hood.

# using apt
sudo apt install tesseract-ocr
# using nala
sudo nala install tesseract-ocr

Installing leptonica (optional)

For certain operations Tess4J requires leptonica, which is a library for image processing and image analysis.

# using apt
sudo apt install libleptonica-dev
# using nala
sudo nala install libleptonica-dev

Install language data

In this example we will install the german language data:

# using apt
sudo apt install tesseract-ocr-deu
# using nala
sudo nala install tesseract-ocr-deu

You can check installed languages using tesseract --list-langs, which should output something like this:

List of available languages (3):
deu
eng
osd

This language data will be installed to /usr/share/tesseract-ocr/4.00/tessdata/.

Add tess4J dependency

You can obtain tess4J from maven central: https://mvnrepository.com/artifact/net.sourceforge.tess4j/tess4j

In case you have a Gradle project or create a new one using gradle init you can add the dependency like so:

build.gradle.kts
implementation("net.sourceforge.tess4j:tess4j:5.8.0")

When you have a maven project simply add the dependency like so:

pom.xml
<dependency>
    <groupId>net.sourceforge.tess4j</groupId>
    <artifactId>tess4j</artifactId>
    <version>5.8.0</version>
</dependency>

Reading text from an image

import net.sourceforge.tess4j.Tesseract
import java.io.File

fun main() {
    Tesseract().apply {
        setDatapath("/usr/share/tesseract-ocr/4.00/tessdata/")
        setLanguage("deu")
    }.run {
        doOCR(File("/home/simon/Pictures/png-with-text.png"))
    }.run {
        println(this)
    }
}

/usr/share/tesseract-ocr/4.00/tessdata/ is the path to the tessdata folder, which was installed earlier.

/home/simon/Pictures/png-with-text.png is the path to the image you want to do ocr on.

The doOCR method is overloaded and can also take a BufferedImage or a ByteBuffer as input, which is pretty handy if you want to do ocr on images in memory, e.g., on a web server.

Cloning tessdata (optional)

If you want to use the latest version of the language data you can clone the tessdata repository. But this repository is quite big (about 5 GB) and you will need to set the datapath for Tess4J.

# using https
git clone https://github.com/tesseract-ocr/tessdata.git

# using ssh
git clone git@github.com:tesseract-ocr/tessdata.git
import net.sourceforge.tess4j.Tesseract
import java.io.File

fun main() {
    Tesseract().apply {
        setDatapath("/home/simon/git/ocr/tessdata/")
        setLanguage("deu")
    }.run {
        doOCR(File("/home/simon/Pictures/png-with-text.png"))
    }.run {
        println(this)
    }
}

Here the setDatapath is set to /home/simon/git/ocr/tessdata/ to point to the cloned tessdata repository.

Additional Tesseract Configuration

Now let's have a look at some additional configuration options for Tesseract.

import net.sourceforge.tess4j.Tesseract
import net.sourceforge.tess4j.TesseractException
import java.io.File
import net.sourceforge.tess4j.ITessAPI

fun main() {
    val tesseract = Tesseract().apply {
        setDatapath("/usr/share/tesseract-ocr/4.00/tessdata/")

        // set language to german and english
        setLanguage("deu+eng")

        // set ocr engine mode to default
        setOcrEngineMode(ITessAPI.TessOcrEngineMode.OEM_DEFAULT)

        // set dpi to 300
        setVariable("user_defined_dpi", "300")

        // only recognize numbers
        setVariable("tessedit_char_whitelist", "0123456789")
    }

    val image = File("/home/simon/Pictures/png-with-text-and-numbers.png")

    try {
        val result = tesseract.doOCR(image)
        println(result)
    } catch (e: TesseractException) {
        println(e.message)
    }
}

Here we specified multiple languages using setLanguage("deu+eng").

We also set the ocr engine mode to default using setOcrEngineMode(ITessAPI.TessOcrEngineMode.OEM_DEFAULT).

The dpi is set to 300 using setVariable("user_defined_dpi", "300").

And we only recognize numbers using setVariable("tessedit_char_whitelist", "0123456789"). Feel free to restrict the characters according to your needs.

Creating documents from multiple images

The following example creates a text and a pdf document from each image.

import net.sourceforge.tess4j.ITessAPI
import net.sourceforge.tess4j.ITesseract
import net.sourceforge.tess4j.Tesseract

fun main() {
    val tesseract = Tesseract().apply {
        setDatapath("/usr/share/tesseract-ocr/4.00/tessdata/")
        setLanguage("deu")
    }

    val images = arrayOf(
        "/home/simon/playground/ocr/joke.jpg",
        "/home/simon/playground/ocr/salary.jpg",
        "/home/simon/playground/ocr/png-with-text.png",
    )

    val output = arrayOf(
        "/home/simon/playground/ocr/output/joke",
        "/home/simon/playground/ocr/output/salary",
        "/home/simon/playground/ocr/output/png-with-text",
    )

    tesseract.createDocuments(images, output, listOf(
        ITesseract.RenderedFormat.TEXT,
        ITesseract.RenderedFormat.PDF
    ))
}

Note that the output path must not contain the file extension, because the file extension is added automatically depending on the output format. This will create the respective txt and pdf files in the output folder.

Just have a look at the RenderedFormat enum to see which output file formats are supported. The nice thing about pdf generation is that the text is search- and selectable in the pdf, but the image is still visible. This is pretty handy since the majority of images do not only contain text, but also some kind of graphics.

Find position of text in image

The following example shows how to find the position of text in an image.

import net.sourceforge.tess4j.Tesseract
import java.io.File
import javax.imageio.ImageIO
import net.sourceforge.tess4j.ITessAPI

fun main() {
    val imageFile = File("/home/simon/Pictures/more-complex.png")
    if(imageFile.exists()) {
        Tesseract().apply {
            setDatapath("/home/simon/git/ocr/tessdata/")
            setLanguage("deu")
            setVariable("user_defined_dpi", "300")
        }.run {
            val bufferedImage = ImageIO.read(imageFile)
            getWords(bufferedImage, ITessAPI.TessPageIteratorLevel.RIL_TEXTLINE)
        }.run {
            this.forEach {
                println("""
                    -----------------------------------------------------------------------------------------
                    Word: ${it.text} 
                    ${it.boundingBox?.let { box ->
                        "BoundingBox: x: ${box.x}, y: ${box.y}, width: ${box.width}, height: ${box.height}"
                    }}
                """.trimIndent())
            }
        }
    } else {
        println("File does not exist")
    }
}

Getting this information is pretty handy, if you want to do some kind of image analysis.

In case the images have a standardized format, you can only look at the position of the text and ignore the rest of the image. The next sections will show how to do this.

Targeting specific areas of an image

The following example shows how to target specific areas of an image. The doOCR method can take a Rectangle as second parameter, which specifies the area of the image to be analyzed.

import java.awt.Rectangle
import net.sourceforge.tess4j.Tesseract
import java.io.File

fun main() {
    val image = File("/home/simon/playground/ocr/energieausweis.jpg")
    if(image.exists()) {
        Tesseract().apply {
            setDatapath("/home/simon/git/ocr/tessdata/")
            setLanguage("deu")
            setVariable("user_defined_dpi", "300")
        }.run {
            val imageAreaIamInterestedIn = Rectangle(80, 60, 500, 35)
            doOCR(image, imageAreaIamInterestedIn)
        }.run {
            println(this)
        }
    }
}

With this it is less likely that the ocr engine will recognize text, which is not relevant for your purpose.

You can try to find the right area by using the getWords method, which was shown in the previous section and then use the Rectangle class to create a rectangle, which contains the text you are interested in.

Supported image formats

  • PNG - requires libpng, libz
  • JPEG - requires libjpeg / libjpeg-turbo
  • TIFF - requires libtiff, libz
  • JPEG 2000 - requires libopenjp2
  • GIF - requires libgif (giflib)
  • WebP requires libwebp
  • BMP - no library required*
  • PNM - no library required*
  • Except Leptonica

Also see: https://tesseract-ocr.github.io/tessdoc/InputFormats.html

Sources